Effect of elliptical deformation on molecular polarizabilities of model carbon nanotubes from atomic increments.

نویسنده

  • Francisco Torrens
چکیده

The interacting induced dipole polarization model implemented in our program POLAR is used for the calculation of the dipole-dipole polarizability alpha. The method is tested with single-wall carbon nanotube models as a function of nanotube radius and elliptical deformation. The results for polarizability follow the same trend as reference calculations performed with our version of the program PAPID. For the zigzag tubes, the polarizability is found to follow a remarkably simple law, that is, it varies as the inverse of the radius. A dramatic effect is also found with elliptical deformation. It is found that the polarizability and related properties can be modified continuously and reversibly by the external radial deformation. These results suggest an interesting technology in which mechanical deformation can control chemical properties of the carbon nanotubes. POLAR calculations differentiate more effectively than PAPID computations among single-wall nanotube models with increasing radial deformation. Different effective polarizabilities are calculated for the atoms at the highest and lowest curvature sites. POLAR calculations discriminate more efficiently than PAPID computations between the effective polarizabilities of the highest and lowest curvature sites. This remarkable and significant tunable polarizability can have important implications for metal coverage of metals on nanotubes and selective adsorption and desorption of foreign atoms and molecules on nanotubes and can lead to a wide variety of technological applications, such as catalysts, hydrogen storage, magnetic tubes, etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model

The examination of variation of elastic modules in single wall carbon nanotubes (SWCNTs) is the aim of this paper. Full nonlinear spring-like elements are employed to simulate specific atomic structures in the commercial code ABAQUS. Carbon atoms are attached to each node as a mass point using atomic mass of carbon atoms. The influence of dimensions such as variation of length, diameter, aspect...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Inelastic Continuum Modeling of Carbon Nanotube,s Behavior Using Finite Element Method

This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nanotube (SWCNT) in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the SWCNT, continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results, an elasto-plastic...

متن کامل

Multiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation

This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2003